Indirect fluorometric detection techniques on thin layer chromatography and effect of ultrasound on gel electrophoresis
Author(s) -
Ma. Yinfa
Publication year - 1990
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/6045672
Subject(s) - chromatography , chemistry , high performance liquid chromatography , thin layer chromatography , detection limit , analytical chemistry (journal) , fluorescence , quantum mechanics , physics
Thin-layer chromatography (TLC) is a broadly applicable separation technique. It offers many advantages over high performance liquid chromatography (HPLC), such as easily adapted for two-dimensional separation, for whole-column'' detection and for handling multiple samples, etc. However, due to its draggy development of detection techniques comparing with HPLC, TLC has not received the attention it deserves. Therefore, exploring new detection techniques is very important to the development of TLC. It is the principal of this dissertation to present a new detection method for TLC -- indirect fluorometric detection method. This detection technique is universal sensitive, nondestructive, and simple. This will be described in detail from Sections 1 through Section 5. Section 1 and 3 describe the indirect fluorometric detection of anions and nonelectrolytes in TLC. In Section 2, a detection method for cations based on fluorescence quenching of ethidium bromide is presented. In Section 4, a simple and interesting TLC experiment is designed, three different fluorescence detection principles are used for the determination of caffeine, saccharin and sodium benzoate in beverages. A laser-based indirect fluorometric detection technique in TLC is developed in Section 5. Section 6 is totally different from Sections 1 through 5. An ultrasonic effect on the separation ofmore » DNA fragments in agarose gel electrophoresis is investigated. 262 refs.« less
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom