
Pad printer for electronics. Final report
Author(s) -
Arlington,
Va
Publication year - 1998
Language(s) - English
Resource type - Reports
DOI - 10.2172/604404
Subject(s) - inkwell , electronics , compatibility (geochemistry) , insulator (electricity) , 3d printer , conductor , engineering , silk , engineering drawing , computer science , electrical engineering , materials science , telecommunications , mechanical engineering , composite material , operating system , chemical engineering
This is the Final report on DARPA-sponsored development Program Pad Printer for Electronics DE-FC04-95AL87486 which was initiated in February, 1995 and intended to run 24 months to February 1997. The Program has significant value to the Thick Film processing industry, an electronic manufacturing alternative for producing functional modules integrated at the multichip level. The result is highly reliable, high volumetric efficiency, subassemblies for military applications and for commercial applications in severe environments, such as automotive, portable communications, and bio-implantable devices. The program progressed quite satisfactorily through 19 months, when it encountered severe, non-technical, difficulties. Resolving these difficulties resulted in several months of delay in completing the Program, but resulted in only a trivial increase in total program cost and no increase in cost to the sponsor. The principle Objective of the Program was the development of a printing system -- machine and appropriate inks -- compatible with existing thick-film processing but offering a 5x improvement in line density. This objective has been met. The Pad Printer is capable of printing suitable inks in traces 25 g wide on 50g centers to a fired thickness of 3 {mu}; each of these parameters is roughly 1/5 the value of the current alternative, silk-screen printing. The available inks represent an assortment of conductor, dielectric, and insulator formulations and the knowledge developed permits extending this family of inks to new and diverse functional materials. An important secondary objective was maximum compatibility with existing Thick Film processing; the printer and ink systems may be substituted directly for the silk screen printers in existing processes. The Program reached or exceeded its other Technical Objectives in almost every case and, in those few instances where the objective was only partially met, work continues under private funding