z-logo
open-access-imgOpen Access
Use of Z-pinch sources for high-pressure shock wave studies
Author(s) -
C.H. Konrad,
J. R. Asay,
C. A. Hall
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/570174
Subject(s) - hohlraum , pinch , shock wave , z pinch , shock (circulatory) , physics , radiation , optics , pulsed power , materials science , mechanics , power (physics) , nuclear physics , laser , medicine , quantum mechanics
In this paper, we will discuss the use of z-pinch sources for shock wave studies at multi-Mbar pressures. Experimental plans to use the technique for absolute shock Hugoniot measurements are discussed. Recent developments have demonstrated the use of pulsed power techniques for producing intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions significantly larger than possible with other radiation sources. Initial indications are that using Z pinch sources for producing Planckian radiation sources in secondary hohlraums can be used to drive shock waves in samples with diameters to a few millimeters and thickness approaching one millimeter in thickness. These dimensions provides the opportunity to measure both shock velocity and the particle velocity behind the shock front with accuracy comparable to that obtained with gun launchers. In addition, the peak hohlraum temperatures of nearly 150 eV that are now possible with Z pinch sources result in shock wave pressures approaching 45 Mbar in high impedance materials such as tungsten and 10-15 Mbar in low impedance materials such as aluminum and plastics. In this paper, we discuss the use of Z pinch sources for making accurate absolute EOS measurements in the megabar pressure range

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom