Development of turbine driven centrifugal compressors for non-condensible gas removal at geothermal power plants. Final report
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/570103
Subject(s) - gas compressor , centrifugal compressor , injector , inlet , gas turbines , petroleum engineering , nuclear engineering , geothermal gradient , environmental science , jet (fluid) , turbine , mechanics , mechanical engineering , engineering , physics , geophysics
Initial field tests have been completed for a Non-Condensible Gas (NCG) turbocompressor for geothermal power plants. It provides alternate technology to steam-jet ejectors and liquid-ring vacuum pumps that are currently used for NCG removal. It incorporates a number of innovative design features to enhance reliability, reduce steam consumption and reduce O&M costs. During initial field tests, the turbocompressor has been on-line for more than 4500 hours as a third stage compressor at The Geysers Unit 11 Power Plant. Test data indicates its overall efficiency is about 25% higher than a liquid-ring vacuum pump, and 250% higher than a steam-jet ejector when operating with compressor inlet pressures of 12.2 in-Hga and flow rates over 20,000 lbm/hr
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom