z-logo
open-access-imgOpen Access
CO{sub 2} huff-n-puff process in a light oil shallow carbonate reservoir. Annual report, January 1, 1996--December 31, 1996
Author(s) -
John Prieditis,
S. Wehner
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/567422
Subject(s) - permian , geology , carbonate , structural basin , petroleum engineering , fossil fuel , petroleum reservoir , environmental science , paleontology , waste management , engineering , chemistry , organic chemistry
The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations; a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Miscible CO{sub 2} flooding is the process of choice for enhancing recovery of light oils and already accounts for over 12% of the Permian Basin`s daily production. There are significant probable reserves associated with future miscible CO{sub 2} projects. However, many are marginally economic at current market conditions due to large up-front capital commitments for a peak response which may be several years in the future. The resulting negative cash-flow is sometimes too much for an operator to absorb. The CO{sub 2} H-n-P process is being investigated as a near-term option to mitigate the negative cash-flow situation--allowing acceleration of inventoried miscible CO{sub 2} projects when coupled together

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom