z-logo
open-access-imgOpen Access
Testing and performance evaluation of T1000G/RS-14 graphite/polycyanate composite materials
Author(s) -
J. Michael Starbuck
Publication year - 1997
Language(s) - English
Resource type - Reports
DOI - 10.2172/565222
Subject(s) - creep , materials science , composite material , composite number , ultimate tensile strength , tension (geology) , filament winding , graphite , tensile testing , stress (linguistics) , structural engineering , universal testing machine , engineering , linguistics , philosophy
The performance of a graphite fiber/polycyanate matrix composite material system, T1000G/RS-14, was evaluated by performing an extensive mechanical property test program. The test program included both static strength and long-term tests for creep, fatigue, and stress rupture. The system was evaluated at both ambient temperature and elevated temperatures. The specimens were machined from composite cylinders that had a unidirectional layup with all the fibers oriented in the hoop direction. The cylinders were fabricated using the wet-filament winding process. In general, the T1000G/RS-14 system demonstrated adequate static strengths for possible aerospace structural applications. The results from the static tests indicated that very high composite hoop tensile strengths can be achieved with this system at both ambient and elevated temperatures as high as 350{degree}F. However, in the long-term testing for compressive creep and tension-tension fatigue the results indicated a lower elevated temperature was required to minimize the risk of using this material system. Additional testing and analysis activities led to the selection of 275{degree}F as the desired temperature for future performance evaluation. Subsequent testing efforts for determining the resin and composite transverse compressive creep responses at 275{degrees}F indicated that excessive creep strain rates may still be a weakness of this system. In the long-term tests, sufficient data was generated from impregnated strand and composite ring stress-life testing, and composite ring tension-tension fatigue to determine failure probabilities for a given set of design requirements. The statistical analyses of the test data, in terms of determining failure probability curves, will be reported on in a separate report. However, it is expected that this material system will have a very low failure probability for stress rupture based on the collected stress-life data. Material responses that will require further investigation and/or possible performance improvements are fiber- direction tension-tension fatigue, and both resin and transverse composite compressive creep. Improvements in the creep performance or dimensional stability of this material system may ultimately depend on the test and/or process environment

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here