z-logo
open-access-imgOpen Access
X-ray microdiffraction studies to measure strain fields in a metal matrix composite
Author(s) -
H.R. Lee,
Wenrong Yun,
Z. Cai,
W. Rodrigues,
D.S. Kupperman
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/555507
Subject(s) - diffraction , materials science , monochromatic color , composite number , x ray crystallography , optics , fiber , beam (structure) , residual stress , x ray , strain (injury) , composite material , physics , medicine
An x-ray diffraction microscope has been used to map the strain field in a fiber-reinforced composite material. The monochromatic x-ray (11 keV) beam was focused by a phase zone plate to produce a focal spot of 1 x 4 {micro}m{sup 2} on the specimen. The change in the peak position of diffraction patterns due to interatomic spacing change, caused by stress in the sample, was measured by using a two-dimensional CCD detector. The radial residual strain field in the fiber-reinforced composite (SCS-6/Ti-14Al-21Nb) was measured from diffraction patterns with a sensitivity of {approximately} 10{sup {minus}4} and an average standard deviation of 9.4 {times} 10{sup {minus}5}

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom