Clutter sensitivity test under controlled field conditions Resonant Microstrip Patch Antenna (RMPA) sensor technology
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/534541
Subject(s) - coal mining , coal , antenna (radio) , engineering , electronics , automation , clutter , interface (matter) , ism band , microstrip , drill , mining engineering , electrical engineering , mechanical engineering , telecommunications , radar , waste management , pulmonary surfactant , gibbs isotherm , chemical engineering
Theoretical research, controlled laboratory tests, and these field test results show that nonmetallic (and metallic) shallowly buried objects can be detected and imaged with the Resonant Microstrip Patch Antenna (RMPA) sensor. The sensor can be modeled as a high Q cavity which capitalizes on its resonant condition sensitivity to scattered waves from buried objects. When the RMPA sensor is swept over a shallowly buried object, the RMPA fed-point impedance (resistance), measured with a Maxwell bridge, changes by tens of percent. The significant change in unprocessed impedance data can be presented in two-dimensional and three-dimensional graphical displays over the survey area. This forms silhouette images of the objects without the application of computationally intensive data processing algorithms. Because RMPA employed electromagnetic waves to illuminate the shallowly buried object, a number of questions and issues arise in the decision to fund or deny funding of the reconfiguration of the RMPA technology into a nonmetallic (metallic) land mine detector
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom