Char particle fragmentation and its effect on unburned carbon during pulverized coal combustion. Quarterly report, April 1--June 30, 1995
Author(s) -
Reginald E. Mitchell
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/515523
Subject(s) - char , pulverized coal fired boiler , combustion , coal , coal combustion products , fragmentation (computing) , waste management , porosity , fly ash , environmental science , mineralogy , chemistry , materials science , engineering , composite material , organic chemistry , computer science , operating system
This document is the eleventh quarterly status report of work on a project concerned with the fragmentation of char particles during pulverized coal combustion that was conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California. The project is intended to satisfy, in part, PETC`s research efforts to understand the chemical and physical processes that govern coal combustion. The work is pertinent to the char oxidation phase of coal combustion and focuses on how the fragmentation of coal char particles affects overall mass loss rates and how char fragmentation phenomena influence coal conversion efficiency. The knowledge and information obtained allows the development of engineering models that can be used to predict accurately char particle temperatures and total mass loss rates during pulverized coal combustion. In particular, the work provides insight into causes of unburned carbon in the ash of coal-fired utility boilers and furnaces. The overall objectives of the project are: (i) to characterize fragmentation events as a function of combustion environment, (ii) to characterize fragmentation with respect to particle porosity and mineral loadings, (iii) to assess overall mass loss rates with respect to particle fragmentation, and (iv) to quantify the impact of fragmentation on unburned carbon in ash. The knowledge obtained during the course of this project will be used to predict accurately the overall mass loss rates of coals based on the mineral content and porosity of their chars. The work will provide a means of assessing reasons for unburned carbon in the ash of coal fired boilers and furnaces
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom