Improvement of hydrogen solubility and entrainment in hydrocracker feedstocks. Final technical report
Author(s) -
Vinayak N. Kabadi
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/515515
Subject(s) - solubility , hydrogen , process engineering , work (physics) , thermodynamics , chemistry , environmental science , organic chemistry , engineering , physics
The project consisted of two tasks: (1) development of a thermodynamic model for hydrogen solubility in hydrocarbons and extension of this model to predict solubility of hydrogen in hydrocracker feedstocks at conditions similar to those of hydrocracking operations, and (2) design and construction of a gas solubility apparatus to measure solubility of hydrogen in hydrocarbons and in hydrocracker feedstocks. The theoretical work proposed was fully accomplished by developing a sophisticated model for hydrogen solubility in hydrocarbons and in hydrocracker feedstocks at advanced temperatures and pressures. The proposed experimental work ran into a number of obstacles, especially to get the original and newly designed on-line sampling technique to function properly. A number of calibrations and tests for reproducibility were necessary to assure the accuracy of measured data. Although a very well designed gas solubility apparatus was built, not much time was left to generate significant hydrogen solubility data. The plans are to use the apparatus in future to measure hydrogen solubility data in liquid fuels to facilitate more efficient design of fuel conversion systems
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom