z-logo
open-access-imgOpen Access
Semiconductor yield improvements through automatic defect classification - Final Report
Author(s) -
Shaun S. Gleason,
Aishwarya Kulkarni
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/508162
Subject(s) - wafer , semiconductor device fabrication , reliability (semiconductor) , computer science , throughput , process (computing) , reliability engineering , wafer fabrication , semiconductor , artificial intelligence , software , feature extraction , engineering drawing , pattern recognition (psychology) , engineering , electrical engineering , operating system , power (physics) , physics , quantum mechanics , wireless
Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. Projections by semiconductor manufacturers predict that with larger wafer sizes and smaller line width technology the number of defects to be manually classified will increase exponentially. This cooperative research and development agreement (CRADA) between Martin Marietta Energy Systems (MMES) and KLA Instruments developed concepts, algorithms and systems to automate the classification of wafer defects to decrease inspection time, improve the reliability of defect classification, and hence increase process throughput and yield. Image analysis, feature extraction, pattern recognition and classification schemes were developed that are now being used as research tools for future products and are being integrated into the KLA line of wafer inspection hardware. An automatic defect classification software research tool was developed and delivered to the CRADA partner to facilitate continuation of this research beyond the end of the partnership

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom