z-logo
open-access-imgOpen Access
Production and decay of heavy top quarks
Author(s) -
Russel P. Kauffman
Publication year - 1989
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/5018921
Subject(s) - physics , particle physics , meson , quark , nuclear physics , boson , top quark , omega baryon , elementary particle , bottom quark , b meson
Experimental evidence indicates that the top quark exists and has a mass between 50 and 200 GeV/c{sup 2}. The decays of a top quark with a mass in this range are studied with emphasis placed on the mass region near the threshold for production of real W bosons. Topics discussed are: (1) possible enhancement of strange quark production when M{sub W} + m{sub s} < m{sub t} < M{sub W} + m{sub b}; (2) exclusive decays of T mesons to B and B{asterisk} mesons using the non-relativistic quark model; (3) polarization of intermediate W's in top quark decay as a source of information on the top quark mass. The production of heavy top quarks in an e{sup +}e{sup {minus}} collider with a center-of-mass energy of 2 TeV is studied. The effective-boson approximation for photons, Z{sup 0}'s and W's is reviewed and an analogous approximation for interfaces between photons and Z{sup 0}'s is developed. The cross sections for top quark pair production from photon-photon, photon-Z{sup 0}, Z{sup 0}Z{sup 0}, and W{sup +}W{sup {minus}} fusion are calculated using the effective-boson approximation. Production of top quarks along with anti-bottom quarks via {gamma}W{sup +} and Z{sup 0}W{sup +} fusion is studied. An exact calculationmore » of {gamma}e{sup +} {yields} {bar {nu}}t{bar b} is made and compared with the effective-W approximation. 31 refs., 46 figs.« less

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom