z-logo
open-access-imgOpen Access
Neutron experiments at Portsmouth for measuring flow and {sup 235}U content in UF{sub 6} gas
Author(s) -
D.C. Stromswold,
P.L. Reeder,
AJ Peurrung
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/495718
Subject(s) - radiochemistry , enriched uranium , neutron flux , neutron source , neutron , neutron temperature , fission , isotopes of uranium , uranium 235 , uranium , chemistry , analytical chemistry (journal) , nuclear engineering , nuclear physics , materials science , physics , environmental chemistry , engineering
The Portsmouth Gaseous Diffusion Plant produces enriched uranium for use in commercial power reactors. The plant also aids disposal of excess high-enrichment uranium (HEU) by blending it with lower-enrichment material. Experiments were conducted to test two neutron-based methods for monitoring the down-blending of HEU. Results of the initial experiments showed that gas (on-off) could be detected, but that additional tests and data are needed to quantify the flow velocity and {sup 235}U content. The experiments used a {sup 252}Cf neutron source to induce fission in a small fraction of the {sup 235}U contained in the UF{sub 6} gas. The first method measured the attenuation of neutrons passing through the low-pressure UF{sub 6} gas in a 7.6-cm diameter pipe. The concept was based on the fact that some of the thermal neutrons are absorbed by {sup 235}U, thus changing the observed count rate. The second method, tested on a 20-cm diameter pipe where gas pressure was higher, used a modulated neutron flux to induce fission in the {sup 235}U. Modulation was achieved by moving a neutron source. During both experiments, plant monitoring equipment showed that light gases (freon, oxygen, and nitrogen) were present in widely varying amounts, along with the UF{sub 6} gas. These gases may have affected the experimental results, at least to the extent that they replaced UF{sub 6}. This report also contains results of computer simulations and tests performed on the electronics after the experiments were completed at Portsmouth. Recommendations are made for follow-on work to measure the flow velocity and {sup 235}U content

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom