Neutron experiments at Portsmouth for measuring flow and {sup 235}U content in UF{sub 6} gas
Author(s) -
D.C. Stromswold,
P.L. Reeder,
AJ Peurrung
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/495718
Subject(s) - radiochemistry , enriched uranium , neutron flux , neutron source , neutron , neutron temperature , fission , isotopes of uranium , uranium 235 , uranium , chemistry , analytical chemistry (journal) , nuclear engineering , nuclear physics , materials science , physics , environmental chemistry , engineering
The Portsmouth Gaseous Diffusion Plant produces enriched uranium for use in commercial power reactors. The plant also aids disposal of excess high-enrichment uranium (HEU) by blending it with lower-enrichment material. Experiments were conducted to test two neutron-based methods for monitoring the down-blending of HEU. Results of the initial experiments showed that gas (on-off) could be detected, but that additional tests and data are needed to quantify the flow velocity and {sup 235}U content. The experiments used a {sup 252}Cf neutron source to induce fission in a small fraction of the {sup 235}U contained in the UF{sub 6} gas. The first method measured the attenuation of neutrons passing through the low-pressure UF{sub 6} gas in a 7.6-cm diameter pipe. The concept was based on the fact that some of the thermal neutrons are absorbed by {sup 235}U, thus changing the observed count rate. The second method, tested on a 20-cm diameter pipe where gas pressure was higher, used a modulated neutron flux to induce fission in the {sup 235}U. Modulation was achieved by moving a neutron source. During both experiments, plant monitoring equipment showed that light gases (freon, oxygen, and nitrogen) were present in widely varying amounts, along with the UF{sub 6} gas. These gases may have affected the experimental results, at least to the extent that they replaced UF{sub 6}. This report also contains results of computer simulations and tests performed on the electronics after the experiments were completed at Portsmouth. Recommendations are made for follow-on work to measure the flow velocity and {sup 235}U content
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom