z-logo
open-access-imgOpen Access
Robotic weld overlay coatings for erosion control. Quarterly technical progress report, October 1994--December 1994
Author(s) -
B.F. Levin,
John N. DuPont,
A. R. Marder
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/49166
Subject(s) - materials science , metallurgy , ultimate tensile strength , coating , erosion , toughness , welding , composite material , geology , paleontology
Research is presently being conducted to develop a criteria for selecting weld overlay coatings for erosion mitigation in Circulated Fluidized Beds. Initially, eleven weld overlay alloys were selected for erosion testing based upon a literature review. All eleven coatings were deposited on 1018 steel substrates using the plasma arc welding process. Ten samples from each coating were prepared for erosion testing. The coating deposition and sample preparation procedures were described in the second quarterly report. All selected coatings were erosion tested at 400{degree}C and their erosion resistance was evaluated by determining the steady state erosion rate. In addition, the microstructure of each coating was characterized before and after the erosion tests. The results of the tests are discussed in the third quarterly report. No correlations were found between room temperature hardness of the weld overlay coatings and their erosion resistance at elevated temperature. During the last quarter tensile tests were performed at 400{degree}C for the Ultimet, Inconel-625, 316L SS, C-22, and Stellite-6 wrought alloys. The erosion tests for these materials at 400{degree}C are in progress. The results of mechanical and erosion tests will be used to correlate mechanical properties of selected wrought alloys such as tensile toughness, ductility, strain hardening coefficient and yield strength to their erosion resistance at 400{degree}C. Also, the erosion behavior of the wrought alloys compared with similar weld alloys will be analyzed. The experimental procedure and results of the tensile tests are presented in this progress report

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom