z-logo
open-access-imgOpen Access
An intelligent inspection and survey robot. Volume 1
Publication year - 1995
Language(s) - English
Resource type - Reports
DOI - 10.2172/491579
Subject(s) - drum , visual inspection , gallon (us) , automated x ray inspection , computer science , computer vision , artificial intelligence , volume (thermodynamics) , robot , base (topology) , computer graphics (images) , engineering , image processing , mechanical engineering , image (mathematics) , mathematics , physics , quantum mechanics , mathematical analysis , aerospace engineering
ARIES {number_sign}1 (Autonomous Robotic Inspection Experimental System), has been developed for the Department of Energy to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. A new version of the Cybermotion series of mobile robots is the base mobile vehicle for ARIES. The new Model K3A consists of an improved and enhanced mobile platform and a new turret that will permit turning around in a three-foot aisle. Advanced sonar and lidar systems were added to improve navigation in the narrow drum aisles. Onboard computer enhancements include a VMEbus computer system running the VxWorks real-time operating system. A graphical offboard supervisory UNIX workstation is used for high-level planning, control, monitoring, and reporting. A camera positioning system (CPS) includes primitive instructions for the robot to use in referencing and positioning the payload. The CPS retracts to a more compact position when traveling in the open warehouse. During inspection, the CPS extends up to deploy inspection packages at different heights on the four-drum stacks of 55-, 85-, and 110-gallon drums. The vision inspection module performs a visual inspection of the waste drums. This system will locate and identify each drum, locate any unique visual features, characterize relevant surface features of interest and update a data-base containing the inspection data

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom