Open Access
Tritium Permeation Estimate from APT and CLWR-TEF Waste Packages
Author(s) -
Elliot A. Clark
Publication year - 1999
Language(s) - English
Resource type - Reports
DOI - 10.2172/4761
Subject(s) - tritium , radioactive waste , waste management , permeation , materials science , volume (thermodynamics) , high level waste , environmental science , radiochemistry , nuclear engineering , chemistry , nuclear physics , engineering , biochemistry , physics , quantum mechanics , membrane
The amount of tritium permeating out of waste containers has been estimated for the Accelerator Production of Tritium project (APT) and for the Commercial Light Water Reactor - Tritium Extraction Facility project (CLWR-TEF). The waste packages analyzed include the Aluminum, Window, Tungsten, Lead, and Steel packages for the APT project, and the overpack of extracted Tritium Producing Burnable Absorber Rods (TPBARs) for the CLWR-TEF project. All of the tritium contained in the waste was assumed to be available as a gas in the free volume inside the waste container at the beginning of disposal, and to then permeate the stainless steel waste container. From estimates of the tritium content of each waste form, the void or free volume of the package, disposal temperature and container geometry, the amount of tritium exiting the waste container by permeation was calculated. Two tritium permeation paths were considered separately: through the entire wall surface area and through the weld area only, the weld area having reduced thickness and significantly less surface area compared to the wall area. Permeation out of the five APT waste containers at 50 degrees Celsius is mainly through the welds, and at 100 degrees Celsius is through the permeation out of the entire wall surface area. The largest maximum offgas rate from an APT waste stream at 50 degrees Celsius (estimated disposal temperature) was 1.8E-6 Ci/year from the weld of the Window waste package, and the smallest maximum offgas rate was 3.7E-5 Ci/year from the weld of the Lead waste package. Permeation from the CLWR-TEF overpack at 40 degrees Celsius is mainly through the entire wall surface area, with a maximum offgas rate of 1.3E-5 Ci/year