z-logo
open-access-imgOpen Access
Existing Data Format for Two-Parameter Beta-Gamma Histograms for Radioxenon
Author(s) -
TW Bowyer,
TR Heimbigner,
JI McIntyre,
AD McKin,
PL Reeder,
E Wittinger
Publication year - 1999
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/4724
Subject(s) - calibration , detector , histogram , spectral line , physics , energy (signal processing) , beta (programming language) , coincidence , gamma ray , spectrum analyzer , computer science , nuclear physics , optics , artificial intelligence , medicine , alternative medicine , pathology , quantum mechanics , astronomy , image (mathematics) , programming language
There is a need to establish a commonly acceptable format for storing beta-gated coincidence data for stations in the International Monitoring System (IMS) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The current aerosol RMS type data format is not applicable for radioxenon in that the current format contains implicit assumptions specific to conventional gamma-ray spectrometry. Some assumptions in the current RMS format are not acceptable for the beta-gated spectra expected from the U.S. Department of Energy PNNL Automated Radioxenon Sampler-Analyzer (ARSA) and other similar systems under use or development from various countries. The RMS data format is not generally applicable for radioxenon measurements in the CTBT for one or more of the following main reasons: 1) The RMS format does not currently support 2-dimensional data. That is, the RMS data format is setup for a simple l-dimensional gamma-ray energy histogram. Current data available from the ARSA system and planned for other radioxenon monitors includes spectral information from gamma-rays and betas/conversion electrons. It is worth noting that the beta/conversion electron energy information will be used to separate the contributions from the different radioxenons. 2) The RMS data format assumes that the conversion between counts and activity can be calculated based (in part) on a simple calibration curve (detector efficiency curve) that depends only on energy of the gamma-ray. In the case of beta-gated gamma-ray spectra and for 2-dimensional spectra, there are generally two detector calibration curves that must be convoluted, the lower energy cutoff for the betas must be considered, and the energy acceptance window must be taken into account to convert counts into activity. . 3) The RMS format has header information that contains aerosol-specific information that allows the activity (Bq) calculated to be converted into a concentration (Bq/SCM). This calculation is performed by dividing the activity calculated (Bq) into number of standard cubic meters of air (SCM) passed through the filters. Most xenon-samplers do not have a 100% collection and transfer efficiency, and these efficiencies should not be assumed constant, so that the total volume flow through the sampler may not be used to convert activity into concentration. There is a pretty straightforward analogy that requires, instead, the total volume of xenon gas measured by the xenon station for the conversion. The following paper describes one possible file format for storing the multi-parameter beta-gamma coincidence spectra generated by the DOE PNNL ARSA sampler. This format proposal was generated as a draft guide to begin discussions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom