Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, April 1, 1996 - June 30, 1996
Author(s) -
K. C. Das,
A.E.J. Akan-Etuk,
Reginald E. Mitchell
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/467818
Subject(s) - pyrite , combustion , combustor , coal , pulverized coal fired boiler , coal combustion products , environmental science , waste management , chemistry , mineralogy , engineering
This document is the eighth quarterly status report on a project that is conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California and is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P. C.) combustion. In general, the project has the following objectives: (1) the characterization of the various mechanisms of intraparticle mass transfer and chemical reaction that control overall pyrite combustion rates and (2) the synthesis of the reaction rate resistances of the various mechanisms into a general rate expression for pyrite combustion. The knowledge gained from this project will be incorporated into numerical codes and utilized to formulate slagging abatement strategies involving the minor adjustment of firing conditions. Ultimately, the benefit of this research program is intended to be an increase in the range of coals compatible with staged, low-NO{sub X} combustor retrofits
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom