
Formation of a buried soft layer in SiC for compliant substrate by ion implantation
Author(s) -
M. Lioubtchenko,
A. Suvkhanov,
N. Parikh,
John D. Hunn,
D. Bray
Publication year - 1997
Language(s) - English
Resource type - Reports
DOI - 10.2172/459397
Subject(s) - annealing (glass) , fluence , materials science , ion implantation , radiation damage , ion , analytical chemistry (journal) , metal , irradiation , rutherford backscattering spectrometry , crystallography , radiochemistry , chemistry , metallurgy , thin film , nanotechnology , nuclear physics , physics , organic chemistry , chromatography
Radiation damage and its removal have been studied in ion implanted 6H-SiC by Rutherford backscattering/Channeling (RBS). They have implanted Ga and Ti at 800 C using doses of 1 {times} 10{sup 16} to 2 {times} 10{sup 17} cm{sup {minus}2}. The implanted samples have been subsequently annealed at 1,050 C, and then at 1,400 C for 30 sec to study the removal of damage produced during implantation. The energies of implanted species have been chosen to obtain 20--40 nm projected ranges to form a buried metallic or graphitic layer. No significant damage removal has been observed after 1,050 C anneal, however 1,400 C annealing of 40 and 120 keV Ga implanted samples (fluence 2 {times} 10{sup 16} cm{sup {minus}2}) resulted in significantly less damage as can be observed from RBS/Channeling data. In the case of Ti implanted samples annealing led to an appreciable increase in the channeled backscattering yield, which might be due to the formation of some new phase (e.g., TiSi or TiSi{sub 2}) and may be related to distortions of the existing lattice