Validation of tectonic models for an intraplate seismic zone, Charleston, South Carolina, with GPS geodetic data
Author(s) -
Pradeep Talwani,
James N. Kellogg,
R. Trenkamp
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/446309
Subject(s) - intraplate earthquake , geodesy , geology , seismology , geodetic datum , plate tectonics , strain rate , global positioning system , tectonics , magnitude (astronomy) , south carolina , degree (music) , induced seismicity , physics , telecommunications , public administration , astronomy , computer science , political science , thermodynamics , acoustics
Although the average strain rate in intraplate settings is 2--3 orders of magnitude lower than at plate boundaries, there are pockets of high strain rates within intraplate regions. The results of a Global Positioning System survey near the location of current seismicity (and the inferred location of the destructive 1886 Charleston, South Carolina earthquake) suggest that there is anomalous strain build-up occurring there. By reoccupying 1930 triangulation and 1980 GPS sites with six Trimble SST dual frequency receivers, a strain rate of 0.4 {times} 10{sup {minus}7} yr{sup {minus}1} was observed. At the 95% confidence level, this value is not significant; however, at a lower level of confidence ({approximately} 85%) it is about two orders of magnitude greater than the background of 10{sup {minus}9} to 10{sup {minus}10} yr{sup {minus}1}. The direction of contraction inferred from the GPS survey 66{degree} {+-} 11{degree} is in excellent agreement with the direction of the maximum horizontal stress (N 60{degree} E) in the area, suggesting that the observed strain rate is also real. 66 refs
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom