
Characterizing large strain crush response of redwood
Author(s) -
S.M. Cramer,
John C. Hermanson,
W.M. McMurtry
Publication year - 1996
Language(s) - English
Resource type - Reports
DOI - 10.2172/437675
Subject(s) - snag , strain (injury) , geology , biology , ecology , anatomy , habitat
Containers for the transportation of hazardous and radioactive materials incorporate redwood in impact limiters. Redwood is an excellent energy absorber, but only the most rudimentary information exists on its crush properties. The objectives of the study were to fill the information gap by collecting triaxial load-deformation data for redwood; to use these data to characterize redwood crush, assess current wood failure theories, provide developments toward a complete stress-strain theory for redwood; and to review the literature on strain-rate effects on redwood crush performance. The load-deformation responses of redwood at temperature conditions corresponding to ambient (70{degrees}F), 150{degrees}F, and {minus}20{degrees}F conditions were measured in approximately 100 confined compression tests for crush levels leading to material densification. Data analysis provided a more complete description of redwood crush performance and a basis for assessing proposed general orthotropic stress-strain relationships for redwood. A review of existing literature indicated that strain-rate effects cause at most a 20 percent increase in crush stress parallel to grain