z-logo
open-access-imgOpen Access
Alpha and gamma radiation effects on air-water systems at high gas/liquid ratios
Author(s) -
David J. Wronkiewicz,
J.K. Bates
Publication year - 1993
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/437673
Subject(s) - radiolysis , oxalate , chemistry , nitrogen , nitrate , formate , nitrite , nitric acid , radiochemistry , irradiation , liquid water , radiation chemistry , analytical chemistry (journal) , nuclear chemistry , chemical reaction , inorganic chemistry , environmental chemistry , radical , physics , nuclear physics , organic chemistry , thermodynamics , catalysis
Radiolysis tests were conducted on air-water systems to examine the effects of radiation on liquid phase chemistry under high gas/liquid volume (G/L) ratios that are characteristic of an unsaturated nuclear waste repository setting. Test parameters included temperatures of 25, 90, and 200{degrees}C; gamma vs. alpha radiation; dose rates of {approximately}3500 and 50,000 rad/h; and G/L ratios of 10 and 100. Formate, oxalate, and total organic carbon contents increased during irradiation of the air-water systems in gamma and alpha tests at low-dose rate ({approximately}3500 rad/h). Increases in organic components were not observed for tests run at 200{degrees}C or high-dose rates (50,000 rad/h). In the tests where increases in organics occurred, the formate and oxalate were preferentially enriched in solutions that were rinsed from the test vessel walls. Nitrate (NO{sub 3}{sup {minus}}) is the dominant anion produced during the radiolysis reactions. Significant nitrite (NO{sub 2}{sup {minus}}) also occurs in some high-dose rate tests, with the reduced form of nitrogen possibly resulting from reactions with the test vessels. These results indicate that nitrogen acids are being produced and concentrated in the limited quantities of solution present in the tests. Nitrate + nitrite production varied inversely with temperature, with the lowest quantities being detected for the higher temperature tests. The G(NO{sub 3}{sup {minus}} + NO{sub 2}{sup {minus}}) values for the 25, 90, and 200{degrees}C experiments with gamma radiation are 3.2 {+-} 0.7, 1.3 {+-} 1.0, and 0.4 {+-} 0.3, respectively. Thus, the elevated temperatures expected early in the life of a repository may counteract pH decreases resulting from nitrogen acid production. Little variation was observed in G values as a function of dose rate or gas/liquid ratio

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom