z-logo
open-access-imgOpen Access
Supersymmetry at LHC
Author(s) -
A. Bartl,
J. Soederqvist,
F. Paige
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/425352
Subject(s) - supersymmetry , physics , particle physics , large hadron collider , parameter space , physics beyond the standard model , standard model (mathematical formulation) , superpartner , unification , scale (ratio) , gauge (firearms) , quantum mechanics , computer science , statistics , mathematics , archaeology , history , programming language
Supersymmetry (SUSY) is an appealing concept which provides a plausible solution to the fine tuning problem, while leaving the phenomenological success of the Standard Model (SM) unchanged. Moreover, some SUSY models allow for the unification of gauge couplings at a scale of M{sub GUT} {approx} 10{sup 16} GeV. A further attractive feature is the possibility of radiative breaking of the electro-weak symmetry group SU(2) {times} U(1). The masses of the SUSY partners of the SM particles are expected to be in the range 100 GeV to 1 TeV. One of the main goals of the Large Hadron Collider (LHC) will be either to discover weak-scale SUSY or to exclude it over the entire theoretically allowed parameter space. The authors have developed a strategy for the analysis of experimental data at LHC which will allow them to determine the scale for supersymmetry, to limit the model parameter space, and to make precision measurements of model parameters

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom