Gigabit network technology. Final technical report
Author(s) -
C.M.C. Davenport
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/422201
Subject(s) - gigabit , ranging , computer science , optical fiber , bandwidth (computing) , microwave , telecommunications , data transmission , optical networking , attenuation , wavelength division multiplexing , electrical engineering , computer network , engineering , optics , physics , wavelength
Current digital networks are evolving toward distributed multimedia with a wide variety of applications with individual data rates ranging from kb/sec to tens and hundreds of Mb/sec. Link speed requirements are pushing into the Gb/sec range and beyond the envelop of electronic networking capabilities. There is a vast amount of untapped bandwidth available in the low-attenuation communication bands of an optical fiber. The capacity in one fiber thread is enough to carry more than two thousand times as much information as all the current radio and microwave frequencies. And while fiber optics has replaced copper wire as the transmission medium of choice, the communication capacity of conventional fiber optic networks is ultimately limited by electronic processing speeds
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom