DEVELOPMENT OF HIGH-STRENGTH CORROSION-RESISTANT ZIRCONIUM ALLOYS
Author(s) -
J.A. De Mastry,
F.R. Shober,
R.F. Dickerson
Publication year - 1960
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/4180978
Subject(s) - materials science , metallurgy , cladding (metalworking) , corrosion , alloy , ultimate tensile strength , zirconium alloy , ternary operation , zirconium , helium , uranium , chemistry , organic chemistry , computer science , programming language
Approximately 100 ternary and quaternary spongezirconium alloys were screened for structural and cladding applications in a natural-uranium-fueled heavy-watermolerated power reactor. The alloy additions studied included2 to 4 wt.% Sn, 0.5 to 2 wt.% Mo, and 1 to 3 wt.% Nb. The effect of 0.1 wt.% Fe and 0.05 wt.% Ni additions to the experimental alloys was evaluated. All compositions were are melted, rolled at 850 ction prod- C from a helium- atmosphere furnace, vacuum annealed 4 hr at 700 ction prod- C, and furnace cooled. Room- and elevated-temperature hardness measurements were used to estimate the tensile strengths of the alloys, while corrosion resistance was evaluated by 1000-hr exposures to static 300 ction prod- C water. (auth
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom