z-logo
open-access-imgOpen Access
PREPARATION AND EVALUATION OF ALUMINUM-35 w/o URANIUM ALLOYS CONTAINING UP TO 3 w/o TIN OR ZIRCONIUM
Author(s) -
Norman E. Daniel,
E.L. Foster,
R.F. Dickerson
Publication year - 1960
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/4149591
Subject(s) - materials science , zirconium , extrusion , alloy , tin , ultimate tensile strength , metallurgy , ternary operation , aluminium , casting , corrosion , zirconium alloy , composite material , computer science , programming language
The effects of ternary additions of up to 3 wt.% Sn or Zr to an Al-35 wt.% U extrusion alloy were evaluated on the basis of casting characteristics, UAl/sub 3/ retention, extrusion behavior, mechanical properties, and corrosion resistance. Both additions increased the fluidity of the alloy, and both promoted retention of UAl/sub 3/. The best fluidity was obtained by a 2 wt.% Sn addition, while Zr was the more effective stabilizer of UAl/sub 3/. The retention of UAl/sub 3/ decreased the extrusion pressure needed for fabrication and caused a corresponding decrease in tensile and creep-rupture properties. Reductions in strength were most noticeable at elevated temperatures. The 1000- hr stress-rupture strength of the binary alloy at 200 deg C (8300 psi) was approximately 25 and 11% higher, respectively, than the alloys containing 3 wt.% tin (6200 psi and 3 wt.% zirconium (7400 psi). The additions either slightly improved or had no effect upon the resistance of the Al-35 wt.% alloy in 150 deg C demineralized water. (auth

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom