
Far infrared spectroscopy of solids. I. Impurity states in Al<sub>2</sub>O<sub>3</sub>. II. Electron-hole droplets in Ge
Author(s) -
Richard Lawrence Aurbauch
Publication year - 1975
Language(s) - English
Resource type - Reports
DOI - 10.2172/4052079
Subject(s) - atomic physics , absorption spectroscopy , excited state , spectroscopy , chemistry , materials science , physics , optics , quantum mechanics
Far infrared Fourier transform spectroscopy was used to study the low lying vibronic states of Mn$sup 3+$ in Al$sub 2$O$sub 3$ and the plasma absorption of electron-hole droplets in Ge. The transmission of Mn-doped samples of Al$sub 2$O$sub 3$ was measured in the frequency range from 3 to 30 cm$sup -1$ in applied magnetic fields up to 50 kG. Absorption lines were observed due to both ground and excited state transitions. Polarization measurements established that these absorption lines were due to electric dipole transitions. Temperature dependence measurements were used to derive a level diagram for the low lying states of Mn$sup 3+$. A phenomenological model based on an electronic Hamiltonian was developed which successfully describes the data. The empirically determined trigonal field and spin-orbit quenching parameters of this model are 0.7 and 0.1 respectively. This quenching is attributed to the dynamic Jahn-- Teller interaction. The plasma absorption of small ($alpha$) electron-hole drops in Ge was measured in the frequency range from 30 to 300 cm$sup -1$. The observed absorption is in good agreement with measurements by Vavilov and other workers. A theoretical model which includes both intraband and interband contributions to the dielectric constant in the Rayleigh limit of Mie theory is used to describe the observed lineshape. Measurements of plasma absorption of large ($gamma$) drops in inhomogeneously stressed Ge were made in magnetic fields up to 50 kG. The lineshape at zero applied field was calculated in the large sphere limit of Mie theory including intraband terms and a zero-strain interband term. Qualitative agreement with experiment was obtained. The peak absorption shifted quadratically with applied magnetic field and the total plasma absorption increased. No oscillatory structure was observed in the field-dependence of the total absorption. (auth