z-logo
open-access-imgOpen Access
Experimental and theoretical investigation of the product channels of the O + CH{sub 3} reaction
Author(s) -
Irene R. Slagle,
Ilia J. Kalinovski,
David Gutman,
Lawrence B. Harding
Publication year - 1994
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/402420
Subject(s) - chemistry , formaldehyde , photoionization , radical , branching (polymer chemistry) , branching fraction , hydrogen , isomerization , bond cleavage , analytical chemistry (journal) , acetone , stoichiometry , photodissociation , photochemistry , ion , organic chemistry , atomic physics , ionization , physics , catalysis
The product channels of the O({sup 3}P)+CH{sub 3} reaction was investigated. In the experimental part, the branching fraction for formaldehyde production (O+CH{sub 3}{r_arrow}H{sub 2}CO+H) was measured at room temperature in a tubular flow reactor coupled to a photoionization mass spectrometer. The reactants (CH{sub 3} and O) were generated homogeneously in the reactor by simultaneous {ital in}{ital situ} 193-nm photolysis of acetone and SO{sub 2}. Formaldehyde yield relative to the methyl radicals consumed (branching fraction) was determined to be 1.0{+-}0.15. In the theoretical part, calculations of the energetics of possible decomposition pathways of the energy-rich methoxy radical initially formed in the O+CH{sub 3} reaction indicate that the dominant channel for decomposition is C-H bond cleavage leading to atomic hydrogen and formaldehyde. A possible, minor, secondary channel is hydrogen migration, followed by O-H bond cleavage, leading to the same final products. No energetically competitive pathways leading to H{sub 2}, HCO, HOC, or CO could be found

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom