Analysis of structure and orientation of adsorbed polymers in solution subject to a dynamic shear stress
Author(s) -
G.R. Smith,
S Baker,
Chris Toprakcioglu
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/393328
Subject(s) - polymer , polymer architecture , adsorption , materials science , molecule , shear flow , shear rate , neutron reflectometry , chemical engineering , size exclusion chromatography , solvent , polymer physics , chemistry , chemical physics , polymer chemistry , thermodynamics , composite material , organic chemistry , neutron scattering , neutron , rheology , physics , quantum mechanics , small angle neutron scattering , engineering , enzyme
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Polymer-based separation techniques rely on the ability of a binding portion of the polymer to interact with a specific molecule in a solution flowing past the polymer. The location of the binding site within or out of the entangled polymer chains is thus crucial to the effectiveness of these methods. For this reason, the details of flow induced deformation of the polymer chains is important in such applications as exclusion chromatography, waste water treatment, ultrafiltration, enhanced oil recovery and microbial adhesion. Few techniques exist to examine the structure and orientation of polymeric materials, and even fewer to examine systems in a dynamic fluid flow. The goal of this project was to understand the molecular structure and orientation of adsorbed polymers with and without active binding ligands as a function of solvent shear rate, solvent power, polymer molecular weight, surface polymer coverage and heterogeneity of the surface polymer chains by neutron reflectometry in a newly designed shear cell. Geometrical effects on binding of molecules in the flow was also studied subject to the same parameters
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom