Dislocations and mechanical properties of single crystal niobium disilicide
Author(s) -
S.A. Maloy,
F. Chu,
J. J. Petrovic,
T. E. Mitchell
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/378865
Subject(s) - materials science , slip (aerodynamics) , niobium , transmission electron microscopy , basal plane , single crystal , atmospheric temperature range , crystallography , composite material , indentation hardness , metallurgy , condensed matter physics , microstructure , thermodynamics , nanotechnology , chemistry , physics
The mechanical properties of single crystal NbSi{sub 2} have been investigated along [0001] and 45{degree} from [0001] toward [11{bar 2}0] using a Nikon QM-2 hot hardness tester from room temperature to 900 C in vacuum. The hardness along [0001] increases from room temperature to 300 C followed by a sharp decrease in hardness with temperature which is accompanied by a large uplift observed surrounding the indentations. Dislocations surrounding the indentations at room temperature and 300 C were analyzed using techniques in transmission electron microscopy to find slip by <10{bar 1}0> dislocations at room temperature with a change in the active slip systems at 300 C. The hardness along a direction 45{degree} from [0001] toward [11{bar 2}0] sharply decreases with increasing temperature above room temperature. Coarse slip lines surround the indentations referring to slip on the basal plane
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom