Correction of closed orbit distortions in the horizontal direction
Author(s) -
S. Ohnuma
Publication year - 1988
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/371293
Subject(s) - orbit (dynamics) , quadrupole , position (finance) , geodesy , physics , skew , geometry , mathematics , aerospace engineering , engineering , geology , atomic physics , astronomy , economics , finance
Many computer programs with a variety of algorithms exist for controlling the closed orbit in synchrotrons. The scope of this note is rather modest in comparison. Based on a simple model, a study has been made to find out statistically how much kick angle is needed by each steering element and how much residual closed orbit deviation should be expected when the closed orbit is steered to go through the center of seven position monitors (M{sub 2} through M{sub 8}) in each cell. Seven independent kicks are supplied by two trim dipoles B{sub U} and B{sub D}, and six steering elements (H{sub 1} through H{sub 6}) with H{sub 3} and H{sub 4} assumed to have the same kick angle. If it is necessary to remove H{sub 3} to make a space there for a correction skew quadrupole (in every other cell), the kick angle of H{sub 4} would have to be doubled
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom