z-logo
open-access-imgOpen Access
Design and testing of a compact X-ray diode. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports
Author(s) -
A. Stern
Publication year - 1999
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/362531
Subject(s) - diode , detector , optics , laser , physics , high energy , computer science , electrical engineering , optoelectronics , engineering physics , engineering
Omega, the University of Rochester`s high powered laser dedicated to fusion research gives off x-rays with different energy levels. Measuring the number of x-rays and the energy of each is important in understanding what happens in the target chamber when Omega is fired. Existing x-ray detectors are expensive, big, and cumbersome. Imaging detectors such as x-ray pinhole cameras which record onto film, x-ray framing cameras which make videos, and most often, x-ray streak cameras which measure time dependences of x-rays. They require a lot of maintenance and are difficult to keep operational. Lawrence Livermore National Laboratory has developed the Dante Diode. The Dante diode array on Omega functions as a group of 12 diodes which take up a 24 inch port in the target chamber, making it space-consuming and difficult to move for alternate views. In designing a new detector, space was the main issue. The smallest possible functional diode, without losing accuracy was desired. Since the laser pulse only lasts a few nanoseconds it is important that the x-ray detector have a response time of a few tenths of a nanosecond. Other criteria include that it be easy to use for measuring the energy and number of x-ray photons and that cost be kept down. This report discusses the design process and testing of the new diode

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom