
Mineralogic variation in drill holes USW NRG-6, NRG-7/7a, SD-7, SD-9, SD-12, and UZ{number_sign}14: New data from 1996--1997 analyses
Author(s) -
S. J. Chipera,
D. T. Vaniman,
D. L. Bish,
J. W. Carey
Publication year - 1997
Language(s) - English
Resource type - Reports
DOI - 10.2172/353999
Subject(s) - chabazite , geology , drill , mineralogy , block (permutation group theory) , zeolite , chemistry , materials science , mathematics , metallurgy , biochemistry , geometry , catalysis
New quantitative X-ray diffraction (QXRD) mineralogic data have been obtained for samples from drill holes NRG-6, NRG-7/7A, SD-7, SD-9, SD- 12, and UZ{number_sign}14. In addition, new QXRD analyses were obtained on samples located in a strategic portion of drill hole USW H-3. These data improve our understanding of the mineral stratigraphy at Yucca Mountain, and they further constrain the 3-D Mineralogic Model of Yucca Mountain. Some of the unexpected findings include the occurrence of the zeolite chabazite in the vitric zone of USW SD-7, broad overlap of vitric and zeolitic horizons (over vertical ranges up to 70 m), and the previously unrecognized importance of the bedded tuft beneath the Calico Hills Formation as a subunit with generally more extensive zeolitization than the Calico Hills Formation in the southern part of the potential repository area. Reassessment of data from drill hole USW H-5 suggests that the zeolitization of this bedded unit occurs in the northwestern part of the repository exploration block as well. Further analyses of the same interval in USW H-3, however, have not permitted the same conclusion to be reached for the southwestern part of the repository block because of the much poorer quality of the cuttings in H-3 compared with those from H-5. X-ray fluorescence (XRF) chemical data for drill holes USW SD-7, 9, and 12 show that the zeolitic horizons provide a >10 million year record of retardation of Sr transport, although the data also show that simplistic models of one-dimensional downward flow in the unsaturated zone (UZ) are inadequate. Complex interstratification of zeolites and glass, with highly variable profiles between drill cores, point to remaining problems in constructing detailed mineral stratigraphies. However, the new data in this report provide important information for constructing bounding models of zeolite stratigraphy for transport calculations