z-logo
open-access-imgOpen Access
Enzyme catalysts for a biotechnology-based chemical industry. Final report, September 29, 1993--September 28, 1998
Author(s) -
Frances H. Arnold
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/345021
Subject(s) - directed evolution , directed molecular evolution , biochemical engineering , sequence space , mutagenesis , microbiology and biotechnology , range (aeronautics) , synthetic biology , biology , computer science , computational biology , engineering , genetics , mathematics , gene , mutation , aerospace engineering , banach space , mutant , pure mathematics
Enzymes have enormous potential for reducing energy requirements and environmental problems in the chemicals and pharmaceutical industries. The explosion of tools that has come out of molecular biology during the last 20 years has made it possible to evolve enzymes for features never required in nature. Scientists can speed up the rate and channel the direction of evolution by controlling mutagenesis and the accompanying selection pressures. Darwinian evolution carried out in the test tube offers a unique opportunity for biotechnology: the ability to tailor enzymes for optimal performance in a wide range of applications. Thus it is possible, for example, to evolve enzymes that carry out reactions on nonnatural substrates or even to carry out reactions for which there is no counterpart in nature. Due to the vast size of the potential sequence space, however, explorations by directed evolution must be guided by sound principles and workable strategies. During the course of this group, this laboratory has continued to make significant progress in the evolution of industrial enzymes as well as in developing general methods for in vitro evolution

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom