z-logo
open-access-imgOpen Access
Lean flammability limit as a fundamental refrigerant property: Phase 3. Final technical report, February 1997--February 1998
Author(s) -
William L. Grosshandler,
Michelle K. Donnelly,
C A. Womeldorf
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/329530
Subject(s) - flammability limit , refrigerant , flammability , refrigeration , environmental science , combustor , nuclear engineering , waste management , ignition system , chemistry , engineering , combustion , heat exchanger , mechanical engineering , aerospace engineering , organic chemistry
Alternative refrigerants are being developed by industry to prevent the further destruction of stratospheric ozone by chlorofluorocarbons (CFCs), which had been the working fluids of choice for many air-conditioning and refrigeration machines. Hydrofluorocarbons (HFCs) are one class of compounds that are being pursued as replacements because their ozone depletion potential is zero. In general, the exchange of fluorine atoms on an HFC molecule with hydrogen atoms decreases its atmospheric lifetime, and it may also increase the efficiency of the working fluid. Both of these effects are highly desirable from environmental considerations since they act to mitigate global warming. Unfortunately, more hydrogen on a HFC is usually associated with an increase in flammability. An accepted method for determining the flammability limits of gaseous fuels is ASTM Standard E 681. The minimum and maximum concentrations of the fuel in air for flame propagation are based upon the observed ignition and growth of a flame in a vessel filled with a quiescent fuel/air mixture. a Clear distinction is sought between a non-propagating flicker and a flame which has enough horizontal propagation to be hazardous. This report reviews the past work done on premixed, counter-flowing flames, describes the current counter-flow burner facility and operating procedures, presents the experimental results with the analysis that yields the above flammability limits, and recommends further activities that could lead to a science-based methodology for assessing the risk of fire from refrigeration machine working fluids. 30 figs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom