z-logo
open-access-imgOpen Access
Characterizing mechanical effects of aging damage
Author(s) -
Thomas D. Sewell,
S.P. Chen,
Jon R. Schoonover,
B.C. Trent,
Philip M. Howe,
Rex P. Hjelm,
R.V. Browning
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/296681
Subject(s) - misorientation , grain boundary , materials science , volume fraction , fracture (geology) , composite number , microstructure , composite material
This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal was to develop and apply several different experimental and theoretical/computational tools to better understand physical and chemical aging phenomena in plastic-bonded high explosives, and to develop a methodology for predicting the likely effects of aging on the mechanical properties of the composite based on input from these fundamental studies. Initial comparisons were done for spectra of fresh and aged Esane, as well as PBX-9501, and the authors found differences in the carbonyl region of the spectrum, which possibly reflect differences in hydrogen bonding due to aging phenomena. The micromechanical model of composites was extended to study various volume fractions of HMX with binders. The results showed that, as the binder fraction increases, there is a decrease in the maximum stress that can be supported but an increase in the percent strain at final fracture. A more realistic microstructural model was obtained through the use of a phase field model. Using this model, the authors have studied the microstructural evolution as a function of the grain boundary energy vs. misorientation relationship. The initial results indicate that there are some changes in the grain growth rate when the grain-boundary energy dependence on the angle is not constant. They also find that solute tends to segregate at the grain boundary and slows the grain growth kinetics

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom