Elimination of TOA corrosion limits
Author(s) -
Steven M. Graves
Publication year - 1959
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/29394
Subject(s) - annulus (botany) , corrosion , limit (mathematics) , scale (ratio) , engineering , nuclear engineering , materials science , structural engineering , physics , mathematics , metallurgy , composite material , mathematical analysis , quantum mechanics
In 1958, planned large scale use of the new I & E slug geometry at more severe operating conditions than had been generally experienced suggested a possible compromise in reactor life and safety if a reasonable degree of rupture control with the new type of element was not maintained. The formalized slug corrosion limit (Top-of-Annulus limit) was issued as a Process Standard at the time of the full-scale loading of I & E geometry fuel elements to provide this limit for reactor operation. The loading of I & E slugs at all reactors has been accomplished and initial power level increases have been made. To date, 67 I & E ruptures have been sustained including both `hole` and `annulus` failures. The type and behavior of ruptures to be expected with I & E geometry are now characterized. Recent studies have indicated that the I & E failure experience is consistent with the general mathematical rupture model formulated from analysis of solid slug experience. Increased confidence in the use of this model in combination with Optimization Studies permits greater emphasis to be placed on the rupture model as a guide for reactor operation. It is the purpose of this report to present the basis for substituting the rupture model for the TOA corrosion limits for rupture control purposes
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom