z-logo
open-access-imgOpen Access
FFTF horizontal sodium storage tank preliminary thermal analysis
Author(s) -
John J. Irwin
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/28271
Subject(s) - storage tank , thermal energy storage , thermal insulation , materials science , environmental science , waste management , engineering , composite material , ecology , layer (electronics) , biology
In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the drain tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The vertical tanks were the subject of a previous report and are not the subject of this report. The fourth tank is a horizontal cylindrical tank 18 feet in diameter, having an overall length of 31 feet and fabricated from carbon steel. The purpose of this work is to document the thermal analyses that were performed to ensure that the FFTF horizontal sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium drain tank is the type of insulation. The baseline case assumed four inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of four inches. Both cases assumed a total electrical trace heat load of 60 kW, evenly distributed on the tank heads and on the tank side wall (cylinder)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom