z-logo
open-access-imgOpen Access
Measuring the spatial frequency transfer function of phase measuring interferometers for laser optics
Author(s) -
C.R. Wolfe,
John D. Downie,
J. K. Lawson
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/281674
Subject(s) - interferometry , optics , astronomical interferometer , physics , wavefront , measure (data warehouse) , phase (matter) , transfer function , fizeau interferometer , spatial frequency , laser , interferometric visibility , computer science , electrical engineering , quantum mechanics , database , engineering
The power spectral density (PSD) function is being employed to specify the surface finish and transmitted wavefront in the mid- spatial frequency regime for laser beam optics of the National Ignition Facility (NIF). The instrument used to measure the PSD is a phase measuring Fizeau interferometer. The phase map produced by the interferometer is digitally processed to create the PSD. Before one can use the PSD information, it is necessary to evaluate the fidelity of the interferometer spatial frequency response. Specifically, one must measure the overall transfer function of the instrument. To accomplish this, we perform a two-step ``calibration`` process. We first measure a known precision phase object with the interferometer and then compare the measured PSD to an ideal numerical simulation which represents the theoretical PSD. The square root of the ratio of the measured function to the simulation is defined as the transfer function of the instrument. We present experimental results for both reflective and transmissive test objects, including effects such as the test object orientation and longitudinal location in the interferometer cavity. We also evaluate the accuracy levels obtained using different test objects. 11 refs., 5 figs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom