Use of organic functional group concentrations as a means of screening for energetics
Author(s) -
I.E. Burgeson,
Samuel A. Bryan,
D.M. Camaioni,
RT Hallen,
B.D. Lerner,
R.D. Scheele
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/276924
Subject(s) - differential scanning calorimetry , environmental science , waste management , hanford site , environmental chemistry , oxidizing agent , chemistry , radioactive waste , engineering , organic chemistry , thermodynamics , physics
One of the safety concerns associated with the waste tanks on the Hanford site is the presence of organics in a highly oxidizing environment that could potentially act as a fuel source to maintain a propagating reaction. To determine this risk, it is necessary to determine the amount of high enthalpy organics present in the tanks. Currently, the primary ways of obtaining this information are to either rely on tank-fill histories, which are often unreliable and do not account for waste-aging processes, or obtain samples from the tank and speciate the organics present through a series of analytical procedures. While organic speciation has been successful in providing very valuable information about organics present in the tanks and the waste aging processes that are occurring in general, it can be costly and time consuming analyzing a large number of waste tanks. Differential scanning calorimetry has previously been used to obtain heat of reaction measurements of Hanford tank waste samples. However, differential scanning calorimetry is shown here to inadequately measure calculated heats of reaction of simulant tank mixtures. Overall, the preliminary results presented here, suggest that indeed Fourier transform infrared and Raman spectroscopy would be useful screening tools for determination of C-H and COO- organic content in tank waste samples analyzed in a hot cell environment. These techniques however, are not truly quantitative for this application and would be primarily used for identifying tanks of potential safety concern that would require further, more detailed confirmatory analysis by organic speciation techniques
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom