
Polyphosphazene membranes for metal ion separations
Author(s) -
Mark Stone
Publication year - 1996
Language(s) - English
Resource type - Reports
DOI - 10.2172/273804
Subject(s) - polyphosphazene , membrane , synthetic membrane , polymer , membrane technology , materials science , gas separation , chemical engineering , phosphazene , solubility , chemistry , organic chemistry , engineering , biochemistry
The Idaho National Engineering Laboratory (INEL), under sponsorship by the Bureau of Mines, evaluated the use of polyphosphazene-based polymer membranes for chemical separations. Synthetic membranes based on phosphazene inorganic polymers offer the promise of new industrial chemical separation technologies that are more energy efficient and economical than traditional phase change separation processes and extraction techniques. The research focused on the separation of metal ions from aqueous solutions. The polyphosphazene membranes were also tested for gaseous separations, results of which are presented in a separate Report of Investigation. Historically, membranes used for chemical separation have been prepared from organic polymers. In general, these membranes are stable only at temperatures less than 100{degrees}C, within narrow pH ranges, and in a very limited number of organic media. As a result, many organic- based membranes are unsuitable for industrial applications, which often involve harsh environments. In recent years, membrane research has focused on ceramic and metal membranes for use in the adverse environments of separation applications. These membranes are suitable for gas and liquid sieve separation applications, where molecules may be separated based on their molecular size. These membranes are not effective where additional selectivity is needed. A membrane that separates on the basis of solubility and that can perform separations in adverse environments is needed, and this need motivated the investigation of polyphosphazene membranes