z-logo
open-access-imgOpen Access
Geochemistry of core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG{number_sign}3, Yucca Mountain, Nevada
Author(s) -
Zell E. Peterman,
Kiyoto Futa
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/266700
Subject(s) - rhyolite , geology , geochemistry , canyon , mineralogy , volcanic rock , geomorphology , volcano
The Tiva Canyon Tuff of Miocene age is composed of crystal-poor, high-silica rhyolite overlain by a crystal-rich zone that is gradational in composition from high-silica rhyolite to quartz latite. Each of these zones is divided into subzones that have distinctive physical, mineralogical, and geochemical features.Accurate identification of these subzones and their contacts is essential for detailed mapping and correlation both at the surface and in the subsurface in drill holes and in the exploratory studies facility (ESF). This report presents analyses of potassium (K), calcium (Ca), titanium (Ti), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), barium (Ba), lanthanum (La), and cerium (Ce) in core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG {number_sign}3. The concentrations of most of these elements are remarkably constant throughout the high-silica rhyolite, but at its upper contact with the crystal-rich zone, Ti, Zr, Ba, Ca, Sr, La, Ce, and K begin to increase progressively through the crystal-rich zone. In contrast, Rb and Nb decrease, and Y remains essentially constant. Initial {sup 87}Sr/{sup 86}Sr ratios are relatively uniform in the high-silica rhyolite with a mean value of 0.7117, whereas initial {sup 87}Sr/{sup 86}Sr ratios decrease upward in the quartz latite to values as low as 0.7090

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom