z-logo
open-access-imgOpen Access
New XAFS spectroscopic investigations in the 1-2 keV region. Final report on LDRD program
Author(s) -
Joe Wong,
Michael Fröba,
E. Tamura
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/264593
Subject(s) - monochromator , x ray absorption fine structure , synchrotron radiation , materials science , bremsstrahlung , metamictization , absorption spectroscopy , beamline , optics , analytical chemistry (journal) , spectroscopy , photon , chemistry , physics , beam (structure) , wavelength , optoelectronics , nuclear physics , quantum mechanics , zircon , chromatography
Until recently x-ray absorption fine structure (XAFS) measurements in the 1-2 keV region remained a challenging experimental task. This was primarily due to the lack of an adequate monochromator crystal that possessed both the required x-ray properties (large d-spacing, high resolution and reflectivity) and materials properties (ultra-high vacuum (UHV) capability, damage resistance in a synchrotron radiation beam, absence of constituent element absorption edges and stability, both thermal and mechanical). Traditionally, XAFS spectra in this photon energy range have been measured in a piece-wise fashion using a combination of monochromator crystals. Very recently, we have an experimental breakthrough in XAFS spectroscopy in this soft x-ray region. This energy region is of great importance for materials and basic research since the K-edges of Na (1070 eV), Mg (1303 eV), Al (1557 eV) and Si (1839 eV), the L-edges of some 4p elements from Ga to Sr and the M-edges of the rare-earth elements fall within this energy window of the electromagnetic spectrum. YB{sub 66}, a complex binary semiconducting yttrium boride having a cubic crystal structure with a lattice constant of 23.44 {angstrom} has been singled out as a candidate monochromator material for synchrotron radiation in the 1-2 keV region. There is no intrinsic absorption by the constituent elements in this region, which can adequately be dispersed by the (400) reflection having a 2d value of 11.76 {angstrom}. In terms of vacuum compatibility, resistance to radiation damage, thermal and mechanical stability, YB{sub 66} satisfies all the material requirements for use as a monochromator in a synchrotron beam. In the past few years, LLNL in collaboration with a number of other research institutes has pioneered the development of this unique man-made crystal for use as soft x-ray monochromator with synchrotron light sources for materials science studies. 23 refs., 4 figs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom