z-logo
open-access-imgOpen Access
Materials analysis of deposits made by the directed-light fabrication process
Author(s) -
G.K. Lewis,
R.B. Nemec,
D. J. Thoma
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/257448
Subject(s) - fabrication , ingot , materials science , extrusion , machining , forging , ceramic , metallurgy , homogenization (climate) , national laboratory , alloy , engineering physics , engineering , medicine , biodiversity , ecology , alternative medicine , pathology , biology
This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The directed-light fabrication (DLF) process is a unique method of forming three-dimensional objects by fusing airborne powders in the focus of a laser beam. This process bypasses conventional ingot processing steps of casting, homogenization, extrusion, forging, and possibly some or all of the required machining. It provides a new ``near-net-shape`` fabrication technology for difficult-to-fabricate materials such as refractory metals, metal composites, intermetallics, ceramics, and possibly superconductors. This project addresses the solidification behavior during DLF processing to characterize the technique in terms of solid/liquid interface characteristics, cooling rates, and growth rates. Materials studied were Ag-Cu, Fe-Ni, 316SS, and Al-Cu

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom