Field task proposal/agreement separation and purification of radioisotopes for research
Author(s) -
W.R. Wilkes,
R. Eppley
Publication year - 1980
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/254993
Subject(s) - uranium , isotopes of uranium , natural uranium , radiochemistry , uranium 235 , uranium 238 , plutonium , uranium 233 , oak ridge national laboratory , thorium , enriched uranium , protactinium , fission products , uranium oxide , neutron flux , isotope separation , polonium , chemistry , nuclear physics , fission , isotope , neutron , mox fuel , physics
The present purpose of this program is to produce high-purity uranium-234 (99%) and polonium-209 for the scientific community, both Governmental and non-Governmental. In addition, facilities for separation and purification of protactinium-231, thorium-230, and thorium-229 are maintained in stand-by condition for the resumption of these processes when conditions warrant. The uranium-234 isotope is separated from aged plutonium-238 material, purified, and converted to solid U{sub 3}O{sub 8}. This oxide is subsequently shipped to Oak Ridge National Laboratory for distribution through their Isotope Sales Group. The principal use of uranium-234, which is recovered from aged plutonium-238, is in fission detectors used to monitor reactors. Approximately one-third of the total uranium in a fission detector is uranium-234. The other two-thirds is uranium-235. A typical detector might contain 15 mg total uranium. As the neutron flux in the reactor causes fission of the uranium-235 in the detector, it also converts the uranium-234 to uranium-235
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom