z-logo
open-access-imgOpen Access
Electromagnetic simulation of electronic packaging designs (95-ERP-003). 1995 LDRD final report
Author(s) -
J.A. Swegle
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/249211
Subject(s) - transmission line , electronic engineering , computer science , electrical impedance , computation , stripline , code (set theory) , time domain , computational electromagnetics , microelectronics , finite difference time domain method , acoustics , electromagnetic field , engineering , electrical engineering , algorithm , telecommunications , optics , physics , set (abstract data type) , quantum mechanics , computer vision , programming language
The primary focus of the project summarized in this report has been to evaluate the performance of the 3D, time-domain electromagnetic code DS13D in the simulation of structures used in microwave microelectronics circuits. We`ve adopted two test cases, coaxial and stripline transmission lines, for which well-known results are available so that results obtained with DS13D could be easily and accurately checked. Our goals have been three-fold: (1) To develop specialized mode-launching capabilities for single-mode signals typically found in test geometries and the diagnostics necessary to evaluate the performance of the code in modeling the propagation of those signals. (2) To analyze the effect of different zoning schemes on the accuracy with which the code models the propagation of signals through the geometries by checking against known analytic results and calculations performed with other codes. (3) To examine the effect of code modifications aimed at enhancing the accuracy of the simulations. The calculated transmission line impedance was chosen as the primary means of evaluating code performance. Since the lowest-order propagating modes for the test cases were transverse electromagnetic (TEM) modes, the computation of impedance was reasonably straightforward. Both time- and frequency-domain values (the latter obtained from the code output by post-processing with a discrete Fourier transform) were obtained and compared

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom