z-logo
open-access-imgOpen Access
Characterization and reactivity of organic monolayers on gold and platinum surfaces
Author(s) -
ChienChing Wu
Publication year - 1995
Language(s) - English
Resource type - Reports
DOI - 10.2172/249072
Subject(s) - monolayer , contact angle , chemistry , reactivity (psychology) , ellipsometry , electrochemistry , carboxylic acid , self assembled monolayer , infrared spectroscopy , platinum , polymer chemistry , metal , crystallography , organic chemistry , materials science , electrode , nanotechnology , catalysis , thin film , medicine , biochemistry , alternative medicine , pathology , composite material
Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pK{sub a} of phenylcarboxylic acids and pyridylcarboxylic acids monolayers on Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom