Westinghouse multi-annular swirl burner CRADA 95-029. Final report
Author(s) -
Not Given Author
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/236263
Subject(s) - combustor , propane , syngas , methane , nuclear engineering , gas burner , dilution , process engineering , current (fluid) , mechanical engineering , environmental science , petroleum engineering , materials science , automotive engineering , computer science , waste management , engineering , chemistry , thermodynamics , combustion , electrical engineering , physics , organic chemistry , hydrogen
The FLUENT computational fluid dynamic code has been used to aid design of the Westinghouse Multi-Annular Swirl Burner (MASB). After successful comparison of FLUENT predictions to test data, design studies using FLUENT have indicated that backwall holes are unnecessary in the MASB design. FLUENT was then used to study the adaptation of the MASB design to the Power Systems Development Facility (PSDF). Preliminary steady-state and transient simulations of the propane-fueled start-up process indicate that flame structure is dependent on the choice turbulence closure and the resultant variation in swirl levels and recirculation zones. Due to the effect of duct geometry on swirl dissipation, a more accurate representation of the transition duct connecting the MASB to the turbine will be needed to better describe the flame structure
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom