z-logo
open-access-imgOpen Access
High Temperature Alkali Corrosion of Dense SN4 Coated with CMZP and Mg-Doped A21TiO5 in Coal Gas
Author(s) -
J.J. Brown,
Nguyen Thierry
Publication year - 1997
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/2277
Subject(s) - corrosion , materials science , alkali metal , coating , heat exchanger , ceramic , doping , oxide , metallurgy , chemical engineering , composite material , chemistry , optoelectronics , mechanical engineering , engineering , organic chemistry
Si3N4 heat exchangers used in industrial systems are usually operating in harsh environments. Not only is this structural material experiencing high temperatures, but it is also subjected to corrosive gases and condensed phases. Past studies have demonstrated that condensed phases severely attack Si3N4 and as a consequence, dramatically reduce its lifetime in industrial operating systems.1,2 Previous research conducted at Virginia Tech on low thermal expansion coefficient oxide ceramics,3,4,5 (Ca1-X,MgX)Zr4(PO4)6 (CMZP), and Mg-doped Al2TiO5, for structural application have shown that these two materials exhibited better resistance to alkaline corrosion than Si3N4. Thus, they were envisioned as good candidates for a protective coating on Si3N4 heat exchangers. As a result, the goal of the present work is to develop CMZP and Mg-doped Al2TiO5 protective thin films using the sol-gel process and the dip coating technique and to test their effectiveness in an alkali-containing atmosphere

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom