Calculating fermion masses in superstring derived standard-like models
Author(s) -
Alon E. Faraggi
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/212704
Subject(s) - yukawa potential , physics , superstring theory , particle physics , standard model (mathematical formulation) , higgs boson , fermion , string (physics) , quark , top quark , lepton , physics beyond the standard model , supersymmetry , theoretical physics , gauge (firearms) , nuclear physics , electron , archaeology , history
One of the intriguing achievements of the superstring derived standard-like models in the free fermionic formulation is the possible explanation of the top quark mass hierarchy and the successful prediction of the top quark mass. An important property of the superstring derived standard-like models, which enhances their predictive power, is the existence of three and only three generations in the massless spectrum. Up to some motivated assumptions with regard to the light Higgs spectrum, it is then possible to calculate the fermion masses in terms of string tree level amplitudes and some VEVs that parameterize the string vacuum. I discuss the calculation of the heavy generation masses in the superstring derived standard-like models. The top quark Yukawa coupling is obtained from a cubic level mass term while the bottom quark and tau lepton mass terms are obtained from nonrenormalizable terms. The calculation of the heavy fermion Yukawa couplings is outlined in detail in a specific toy model. The dependence of the effective bottom quark and tau lepton Yukawa couplings on the flat directions at the string scale is examined. The gauge and Yukawa couplings are extrapolated from the string unification scale to low energies. Agreement with {alpha}{sub strong}, sin{sup 2} {theta}{sub W} and {alpha}{sub em} at M{sub Z} is imposed, which necessitates the existence of intermediate matter thresholds. The needed intermediate matter thresholds exist in the specific toy model. The effect of the intermediate matter thresholds on the extrapolated Yukawa couplings is studied. It is observed that the intermediate matter thresholds help to maintain the correct b/{tau} mass relation. It is found that for a large portion of the parameter space, the LEP precision data for {alpha}{sub strong}, sin{sup 2} {theta}{sub W} and {alpha}{sub em}, as well as the top quark mass and the b/{tau} mass relation can all simultaneously be consistent with the superstring derived standard-like models
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom